当前位置:首页 > 服务端 > 利用TensorFlow Object Detection API实现迁移学习

利用TensorFlow Object Detection API实现迁移学习

Log

[TOC]

试验环境:

GPU:  TITAN Xp
CPU:  Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
OS: Ubuntu 16.04
Anaconda: conda 4.6.11
Python: 3.5.6
Tensorflow: 1.10.0

数据准备

更新:

关于生成TF record,在网上找到了另一个方法:分别对训练数据集和测试数据集运行下列脚本,得到train.record和val.record

# xml2csv.py

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET

os.chdir('/root/proj_emotor/data/VOCdevkit/VOC2012/Annotations')
path ='/root/proj_emotor/data/VOCdevkit/VOC2012/Annotations'

def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df


def main():
    image_path = path
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv('emotor_train.csv', index=None)
    print('Successfully converted xml to csv.')


main()


# generate_tfrecord.py
# -*- coding: utf-8 -*-
"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv  --output_path=train.record
  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
"""
import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

os.chdir('/root/proj_emotor/data')

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'emotor':     # 需改动
        return 1
    else:
        None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), '/root/proj_emotor/data/VOCdevkit/VOC2012/JPEGImages')         #  需改动
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()


原先

总共1700张未被标注的图片。随机选取800张做前期测试。

使用LabelImg进行手动标注,对象标签名设置为emotor。

标注的时候图片1-400所在文件夹名字为result
图片401-800所在文件夹名字为ImageSets
导致得到的.xml中有属性:

<folder>result</folder>
        <filename>1.jpg</filename>
        <path>F:\result\1.jpg</path>
<folder>ImageSets</folder>
        <filename>405.jpg</filename>
        <path>/home/hzq0/VOC2012/ImageSets/405.jpg</path>

其中的

<folder>ImageSets</folder>

在产生TFRecord的时候会有影响,后面会解释。

将所有得到的.xml放在Anotations文件夹中,将图片1-400放在result文件夹中,图片401-800放在ImageSets文件夹中。

执行脚本

import os
import random

trainval_percent = 1
train_percent = 0.5
xmlfilepath = 'VOC2012\VOC2012\Annotations'
txtsavepath = 'VOC2012\VOC2012\ImageSets\Main'
total_xml = os.listdir(xmlfilepath)

num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train = random.sample(trainval, tr)

ftrainval = open('VOC2012\VOC2012\ImageSets\Main\\trainval.txt', 'w')
ftest = open('VOC2012\VOC2012\ImageSets\Main\\test.txt', 'w')
ftrain = open('VOC2012\VOC2012\ImageSets\Main\\train.txt', 'w')
fval = open('VOC2012\VOC2012\ImageSets\Main\\val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + ' '+ '1' + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)
        
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

用来创建ImageSets/Main中的四个.txt,在别处执行该脚本需自行修改其中的文件路径。

在创建tfrecord时,发现四个.txt只用到两个。怎么修改后面再说。

在准备好所需要的几个文件夹之后,拷贝脚本 create_pascal_tf_record.py,拷贝文件pascal_label_map.pbtxt 到自己的工作目录。并且修改pascal_label_map.pbtxt文件名为emotor_label_map.pbtxt

文件夹结构

我的工作目录叫做proj_emotor,数据准备部分的工程结构为:

+ proj_emotor:
    + data:
        - create_pascal_tf_record.py
        - emotor_label_map.pbtxt
        + VOCdevkit:
            + ImageSets:
                + JPEGImages:
                    - 401~800.jpg
            + result:
                + JPEGImages:
                    - 1~400.jpg
            + VOC2012:
                + Anotations:
                    - .xml
                + ImageSets:
                    + Main:
                        - emotor_train.txt
                        - emotor_val.txt
                + JPEGImages:
                    - all pics

前面我们都没有改过配置文件和脚本的内容,下面需要对它们做一些修改。

首先,删除emotor_label_map.pbtxt的内容,修改为:

item {
  id: 1
  name: 'emotor'
}

然后,修改create_pascal_tf_record.py的第 165 行,把aeroplane_ 改为 emotor_

仔细看目录树,原来的ImageSets/Main里面的四个.txt只保留了train.txtval.txt 并且在前面都增加了emotor_ ,这么改的原因在create_pascal_tf_record.py的第 165 行。

修改完成后,就可以执行脚本了。

在这之前再解释一下为什么在VOCdevkit多了resultImageSets

因为在使用LabelImage打标签的时候,前400张是在 result文件夹里打的,后400张是在ImageSets里打的(这里是个失误,本意是想把文件夹命名为VOC2012的),前面说了得到的.xml里有这么一句话

<folder>ImageSets</folder>

因为这个多余的信息,导致在创建TFRecord的时候会去先去对应的文件夹,再找JPEGImages。所以以后标注数据时,应该统一将图片先放进 VOC2012 文件夹然后再打标签。

创建TFRecord

#From proj_emotor/data

python create_pascal_tf_record.py \
    --label_map_path=pascal_label_map.pbtxt \
    --data_dir=VOCdevkit --year=VOC2012 --set=train\
    --output_path=emotor_train.record

python create_pascal_tf_record.py \
    --label_map_path=pascal_label_map.pbtxt \
    --data_dir=VOCdevkit --year=VOC2012 --set=val\
    --output_path=emotor_val.record

注意执行命令的位置。

成功之后在 data 目录下得到两个文件:

emotor_train.record
emotor_val.record

进行训练

准备工作

首先在 TensorFlow Model Zoo下载官方的预训练模型。

我用的是 ssd_mobilenet_v2_coco,在proj_emotor/models/model下解压。

现在proj_emotor下文件夹结构:

+ proj_emotor
    + data:
        ...
    + models:
        - model_main.py  
        - pipeline.config
        + model:
            + train
            + eval
        + ssd_mobilenet_v2_coco_2018_03_29

其中的 model_main.py 复制自其原始位置。

pipeline.config拷贝自解压后得到的ssd_mobilenet_v2_coco_2018_03_29/pipeline.config

修改其中的内容,修改后内容为:

model {
  ssd {
    num_classes: 1
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          truncated_normal_initializer {
            mean: 0.0
            stddev: 0.0299999993294
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.999700009823
          center: true
          scale: true
          epsilon: 0.0010000000475
          train: true
        }
      }
      batch_norm_trainable: true
      use_depthwise: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            truncated_normal_initializer {
              mean: 0.0
              stddev: 0.0299999993294
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.999700009823
            center: true
            scale: true
            epsilon: 0.0010000000475
            train: true
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.990000009537
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
  }
}
train_config {
  batch_size: 24
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  optimizer {
    rms_prop_optimizer {
      learning_rate {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.00400000018999
          decay_steps: 800720
          decay_factor: 0.949999988079
        }
      }
      momentum_optimizer_value: 0.899999976158
      decay: 0.899999976158
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "/root/proj_emotor/model/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
  num_steps: 200000
  fine_tune_checkpoint_type: "detection"
}
train_input_reader {
  label_map_path: "/root/proj_emotor/data/emotor_label_map.pbtxt"
  tf_record_input_reader {
    input_path: "/root/proj_emotor/data/emotor_train.record"
  }
}
eval_config {
  num_examples: 8000
  max_evals: 10
  use_moving_averages: false
}
eval_input_reader {
  label_map_path: "/root/proj_emotor/data/emotor_label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "/root/proj_emotor/data/emotor_val.record"
  }
}

开始训练

# From the proj_emotor/models directory
python model_main.py \
    --pipeline_config_path=pipline.config \
    --model_dir=model \
    --num_train_steps=80000 \
    --sample_1_of_n_eval_examples=1 \
    --alsologtostderr

训练期间可以使用TensorBoard实时查看训练的进度。

tensorboard --logdor={PATH TO LOG}

这里log的位置就是训练过程中日志输出的位置

训练结束之后,model文件夹中得到如下内容:

model
├── checkpoint
├── eval
│   └── events.out.tfevents.1563524306.hzq
├── events.out.tfevents.1563523648.hzq
├── export
│   └── Servo_0
│       └── 1563551359
│           ├── saved_model.pb
│           └── variables
│               ├── variables.data-00000-of-00001
│               └── variables.index
├── graph.pbtxt
├── model.ckpt-74690.data-00000-of-00001
├── model.ckpt-74690.index
├── model.ckpt-74690.meta
├── model.ckpt-76420.data-00000-of-00001
├── model.ckpt-76420.index
├── model.ckpt-76420.meta
├── model.ckpt-78144.data-00000-of-00001
├── model.ckpt-78144.index
├── model.ckpt-78144.meta
├── model.ckpt-79957.data-00000-of-00001
├── model.ckpt-79957.index
├── model.ckpt-79957.meta
├── model.ckpt-80000.data-00000-of-00001
├── model.ckpt-80000.index
├── model.ckpt-80000.meta
├── pipeline.config
└── train

得到用于推理的模型

 python export_inference_graph.py \
        --input_type=image_tensor \
        --pipeline_config_path=./model/pipeline.config \
        --trained_checkpoint_prefix=/root/proj_emotor/models/model/model.ckpt-80000 \
        --output_directory=./model/train/

其中的--pipeline_config_path是训练得到的pipeline.config,不是用于训练的pipeline.config

train
├── checkpoint
    ├── frozen_inference_graph.pb
    ├── model.ckpt.data-00000-of-00001
    ├── model.ckpt.index
    ├── model.ckpt.meta
    ├── pipeline.config
    └── saved_model
        ├── saved_model.pb
        └── variables

train文件夹中得到了用于推理的pb文件 frozen_inference_graph.pb。

推理

用于推理的代码:

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')


# This is needed to display the images.
#%matplotlib inline

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as vis_util

# What model to download.
MODEL_NAME = '/root/proj_emotor/models/model/train/'
#MODEL_FILE = MODEL_NAME + '.tar.gz'
#DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + 'frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/root/proj_emotor/data', 'emotor_label_map.pbtxt')

#opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
#tar_file = tarfile.open(MODEL_FILE)
#for file in tar_file.getmembers():
#  file_name = os.path.basename(file.name)
#  if 'frozen_inference_graph.pb' in file_name:
#    tar_file.extract(file, os.getcwd())

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)

# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'TEST_IMGs'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, '{}.jpg'.format(i)) for i in range(1, 100) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict

for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
  image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
  output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=8)
  plt.figure(figsize=IMAGE_SIZE)
  plt.imshow(image_np)
  plt.show()

问题

1

google.protobuf.text_format.ParseError: 35:7 : Message type "object_detection.protos.SsdFeatureExtractor" has no field named "batch_norm_trainable"

删除pipline.config中的

batch_norm_trainable: true

之后,得到了解决。但是不知道影响在哪,之前没遇到过。

解释

前面几次试验时的pipeline.config是拷贝自 samples/configs/ssd_mobilenet_v2_coco.config,里面没有这个配置选项。具体这个选项什么作用,还不知道。

2

训练开始之后,有些参数没能使用checkpoints进行初始化

Use `tf.data.Dataset.batch(..., drop_remainder=True)`.
W0718 14:56:12.331554 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/beta] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1280]], model variable shape: [[256]]. This variable will not be initialized from the checkpoint.
W0718 14:56:12.331802 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/gamma] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1280]], model variable shape: [[256]]. This variable will not be initialized from the checkpoint.
W0718 14:56:12.331923 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/moving_mean] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1280]], model variable shape: [[256]]. This variable will not be initialized from the checkpoint.
W0718 14:56:12.332051 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/Conv_1/BatchNorm/moving_variance] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1280]], model variable shape: [[256]]. This variable will not be initialized from the checkpoint.
W0718 14:56:12.332157 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/Conv_1/weights] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1, 1, 320, 1280]], model variable shape: [[1, 1, 320, 256]]. This variable will not be initialized from the checkpoint.
W0718 14:56:12.336651 139700418553600 variables_helper.py:141] Variable [FeatureExtractor/MobilenetV2/layer_19_1_Conv2d_2_1x1_256/weights] is available in checkpoint, but has an incompatible shape with model variable. Checkpoint shape: [[1, 1, 1280, 256]], model variable shape: [[1, 1, 256, 256]]. This variable will not be initialized from the checkpoint.

作者:HZQTS
来源链接:https://www.cnblogs.com/hezhiqiangTS/p/11233745.html

版权声明:
1、Java侠(https://www.javaxia.com)以学习交流为目的,由作者投稿、网友推荐和小编整理收藏优秀的IT技术及相关内容,包括但不限于文字、图片、音频、视频、软件、程序等,其均来自互联网,本站不享有版权,版权归原作者所有。

2、本站提供的内容仅用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯相关权利人及本网站的合法权利。
3、本网站内容原作者如不愿意在本网站刊登内容,请及时通知本站(javaclubcn@163.com),我们将第一时间核实后及时予以删除。





本文链接:https://www.javaxia.com/server/124628.html

分享给朋友:

“利用TensorFlow Object Detection API实现迁移学习” 的相关文章